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Introduction 

Organizational Structure of the Report 

A challenge in organizing this report was to provide sufficient detail to readers that desire 
it, while also providing a relatively high-level summary of the entire project. Published 
materials that resulted from this project currently include eleven conference/journal 
papers, two PhD dissertations, and five MS theses. The eleven published papers are 
included in printed form in the appendices of this report. It was natural to include copies 
of the papers in printed form and refer readers interested in further details to the 
dissertations and theses (which are available online) because the papers were generally 
derived from the dissertations and theses.  It was infeasible to incorporate the 
dissertations and theses in printed form; there are over 800 pages associated with these 
documents. The report is organized hierarchically, as illustrated in Figure 1. 
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Figure 1. Organizational structure of the report. 
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The main body of the report provides a summary of basic results, and includes four 
major parts: (1) Optimal Multiprocessor Configuration for SAR; (2) Optimal 
Communication Scheduling for STAP; (3) FPGA Power Prediction and Applications; 
and (4) Hybrid FPGA/DSP/GPP Platform. Each of these parts is supported by a 
collection of published papers, theses, and dissertations produced during the project 
period. Copies of the published papers are included in the appendices of the report. 
References to these publications are labeled with a number followed by the letter of the 
appendix where a copy of the publication can be found. For example, reference label 
[1A] indicates that a copy of the referenced publication can be found in Appendix A. Due 
to size considerations, copies of theses and dissertations, such as reference [3], are not 
included in an appendix; however, online links for all references are provided in the list 
of references. For conference papers, links to the associated presentation materials are 
also provided within the list of references. As illustrated in Figure 1, additional materials 
are also available online, including annual project summaries, technical reports, and 
presentations and posters given at conferences and PI (principal investigator) meetings. 
Online links to additional materials are provided in the section entitled Additional 
Materials, which follows the References section. 

Each major part is divided into subsections, and each subsection provides an overview 
of one or more published papers.  Overviews of some of the conference papers (e.g., 
[15I] and [18K]) actually expand upon the publication by including content from the 
presentation materials associated with that publication. Readers not needing the level of 
detail found in these overviews are encouraged to first read the Acknowledgments 
section, which includes a paragraph on the work conducted by each student assistant.  Of 
course readers requiring more detail are encouraged to pursue copies of the papers found 
in the appendices, online links of presentation materials found in the References section, 
and/or the online links found in the Additional Materials section.  
 
Project Overview 

The advantages of using digital signal processing (DSP) chips for high-performance 
embedded signal processing applications have been demonstrated during the past decade. 
DSP chips often win over general purpose processors (GPPs) because their complexity 
(measured, for example, in terms of silicon area, number of transistors, or power 
consumption) is better matched to the highly regular and numerical-intensive 
computations required by many signal processing based embedded applications. 
However, it is now apparent that even DSP chips can be overkill for some computations 
found in common embedded military applications. That is, in some cases DSP chips are 
equipped with much more architectural complexity than is actually needed, resulting in 
inefficiencies and greater power consumption than absolutely necessary. 

In this project, we investigated the advantages of integrating configurable hardware 
together with a multiprocessor DSP/GPP platform. The computational engine of the 
configurable hardware used in this project was comprised of FPGA chips. A primary goal 
of our project was to demonstrate that for given computational loads – associated with 
instances of embedded radar signal processing applications – the total size, weight, and 
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power (SWAP) could be reduced by integrating FPGA-based components as part of the 
embedded computational platform.  

Reconfigurable computing devices, such as FPGAs, can offer a cost-effective and 
more flexible alternative than the use of application specific integrated circuits (ASICs). 
FPGAs are especially cost-effective compared to ASICs when only a small number of the 
chip(s) are required. Another major advantage of FPGAs over ASICs is that they can be 
reconfigured to change their functionality while still resident in the system, which allows 
hardware designs to be changed similar to software, and dynamically reconfigured to 
perform different functions at different times. 

A number of theoretical and empirical studies were conducted during the project 
period to understand and demonstrate the advantages and disadvantages of DSP/GPP 
versus FPGA technologies with respect to SWAP. A prototype heterogeneous 
FPGA/DSP/GPP-based platform was constructed using commercial off-the-shelf (COTS) 
components to demonstrate the utility of a hybrid system containing all three types of 
technologies. A number of systematic approaches and tools based on mathematical 
programming and modeling were developed to optimally configure FPGA/DSP/GPP-
based platforms for applications in the radar signal-processing domain. The two major 
applications considered were SAR (synthetic aperture radar) and STAP (space-time 
adaptive processing).  

The prototype system was constructed using COTS components from two vendors: 
Annapolis Micro Systems, Inc. and Mercury Computer Systems, Inc. We had excellent 
support from both companies, and we designed and implemented a custom interface to 
allow communication between two disparate product lines of these vendors. 
Implementation of a custom interface was necessary because at that time (1997-98) there 
were few interfacing standards among vendors such as the two we were working with 
and little customer demand (excluding us, of course!) for providing such an interface. 
The availability of products and support to more easily interface components from 
different vendors, including the two we worked with, is much better today. In fact, the 
output of our research, which illustrated the potential benefits of a hybrid 
FPGA/DSP/GPP platform, served as a catalyst for these industry sectors to invest 
significant resources and provide support and standards appropriate for interfacing their 
product lines.  
 
Brief Descriptions of Major Parts of the Report  

Part 1: Optimal Multiprocessor Configuration for SAR – describes research for 
determining optimal multiprocessor configurations for instances of the SAR processing 
problem. The research was targeted at how to optimally configure a multiprocessor 
system for given instances of the SAR problem so that the resulting power consumption 
of the multiprocessor system is minimized.  The key to the approach involved making the 
proper trade-off between the number of processors and amount of memory associated 
with the multiprocessor configuration.  References associated with this work are [1A], 
[2B], and [3]. 
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Part 2: Optimal Communication Scheduling for STAP – describes research for 
determining how to best schedule inter-processor communications of a parallel STAP 
algorithm mapped onto a Mercury Race Multiprocessor.  The approach is based on a 
genetic algorithm, and the research also resulted in the development of a fast and 
accurate network simulator for the RACEway® interconnection network. References 
associated with this work are [4C], [5D], [6E], [7], and [8]. 

Part 3: FPGA Power Prediction and Applications – describes mathematical models and 
other approaches developed for predicting power consumption for FPGA circuits. We 
found that predicting power consumption for FPGAs was particularly difficult, as it 
strongly depends on precisely how the chip is configured and the “activity” 
characteristics of the input data being processed. Nevertheless, we generated new and 
important results and tools in this area. We also demonstrated the utility of using FPGA 
circuits for portions of the SAR and STAP applications.  References associated with this 
work are [9F], [10], [11G], [12H], [13], [14], [15I], [16J], and [17]. 

Part 4: Hybrid FPGA/DSP/GPP Platform – describes a prototype hybrid platform that 
was constructed for this project. It includes the detailed design and development of the 
custom interfaces implemented to interconnect the disparate products of the two vendors. 
Some performance results are also included. The reference associated with this work is 
[18K].  
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Part 1: Optimal Multiprocessor Configuration for SAR 

Overview of References [1A], [2B], and [3] 

The real-time embedded application considered in this part, i.e., SAR, as well as many 
others of military interest, are characterized by a common theme: processing a continuous 
stream of data collected from radar sensors. The rate at which data samples flow from the 
sensor(s) to the computational platform is typically very high – often on the order of tens 
or hundreds of millions of samples per second and even higher. Furthermore, the number 
of calculations to be performed on each sample is typically at least 100 FLOPs (floating-
point operations), which amounts to an overall computational throughput requirement 
ranging from at least one to ten billion FLOPs (and often much higher). 

At the beginning of the contract period, approaches capable of providing a 
computational platform that could achieve these types of computational throughput rates 
typically involved a “pipeline of interconnected processors” style of architecture. Such an 
approach could be a valid and effective architecture in some cases. However, situations 
often arose in which the throughput requirements dictated that 100 or more SHARC® (or 
similar) DSP processors were required. In many situations, the associated level of power 
requirement for the computational platform alone posed a severe problem, because of the 
strict power budgets available on UAVs (unmanned aerial vehicles) and satellites where 
these systems are deployed.  

In the paper [1A], we showed how a DSP/GPP-based multiprocessor system could be 
optimally configured using two types of processor/memory daughtercards to minimize 
overall power consumption for SAR applications. We showed that by careful (and often 
counterintuitive) selection of parameters associated with both the hardware (the number 
of daughtercards of two possible types) and the application software (a parameter known 
as the azimuth section size), an optimal configuration (one with minimal power 
consumption) can be derived based on the application of mathematical programming 
techniques. 

Our approach centered on the derivation of two mathematical formulas for given 
instances of the SAR problem: one for the total numbers of processors required and the 
other for the total memory required. Both of these functions are dependent on the choice 
of the section size parameter. The derived functions dictate that if a small section size is 
used, then the associated memory requirements are small, but the processor requirements 
are high. On the other hand, a large section size was shown to result in a requirement for 
fewer processors, but more memory.  

The reason a large section size implies that fewer processors are required is because 
only a small fraction of data is discarded during the calculation of the so-called sectioned 
fast convolutions (refer to Figure 2). This implies that the processors are being used with 
high efficiency when the section size is large. On the other hand, when a small section 
size is used, then more processors are required because a relatively large fraction of data 
is overlapped. From Figure 2, note that the overlapped data samples are actually 
processed twice. Although achieving high processor efficiency is a traditional objective, 
the trade-off is that implementing the associated large section sizes requires extra 



 

 

 

6

memory, and extra memory consumes extra power. It is this inherent trade-off between 
processor efficiency, memory, and section size that our approach optimized. 

Kernel

Discard

Overlap
Section

FFT size

Large Overlap/Section ratio ⇒ Small azimuth memory, large number azimuth processors
Small Overlap/Section ratio ⇒ Large azimuth memory, small number azimuth processors

 

Figure 2. This diagram illustrates the method of performing sectioned fast convolutions 
on azimuth input data with a pre-stored kernel. Given that the kernel size is 
fixed, then if the section size is made large, a relatively small fraction of 
samples are discarded for each section, thus making processor efficiency high. 
Conversely, if the section size is small, then a relatively large fraction of 
samples must be discarded for each section, resulting in poor processor 
efficiency, but relatively small memory requirements. 

The two daughtercards assumed to be available in our approach were: Type 1, which 
had six SHARC® processors and a total of 32MB of memory; and Type 2, which had 
two SHARC® processors and a total of 64MB of memory. Thus, our optimization 
procedure was based on minimizing total consumed power based on proper selection of 
three parameters: section size, number of Type 1 cards, and number of Type 2 cards.  
Note that allowing two daughtercards in the configuration put additional constraints on 
the types of configurations that were possible. Thus, in general, arbitrary numbers of 
processors and amounts of memory could not me configured. However, the underlying 
concept of trading the efficiency of processors for more memory was still present. 

One interesting lesson learned from our study happened when we considered a 
situation in which only Type 1 cards were assumed to be available for configuring the 
system (recall that the Type 1 card is “processor rich” and “memory poor” as compared 
with the Type 2 card). For this case of configuring only with Type 1 cards, the 
optimization procedure selected very small section sizes – smaller than one would think 
to be reasonable. We had to think about why this was happening; it went against our 
intuition. After some thought, we realized the reason – the objective of our optimization, 
afterall, was to minimize consumed power, not to maximize processor efficiency. The 
mathematical programming procedure had no regard for processor efficiency; its only 
concern was to use the available resources (in this case a lot of processors, and not much 
memory) to minimize total consumed power. If that means inefficient use of the 
processors, then so be it. 

Consider why it is generally not optimal to force our expectations about what 
“reasonable” processor efficiencies should be for the case discussed in the previous 
paragraph. To achieve such efficiencies may require substantial memory (refer to Figure 
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2). So, if “reasonable” processor efficiencies are forced into the configuration, then the 
number of cards required by the configuration must increase – not because more 
processors are required, but because more memory is required. In fact, some processors 
will be idle while the few “efficient ones” are working away – the resource being fully 
used is the memory. Recall that consumed power is in direct proportion to the number of 
cards in the configuration. This helped us understand a new interpretation for what our 
optimization procedure was actually doing: piecing together the “pre-configured silicon” 
cards available in the most power efficient way possible. Forget about the importance of 
processor efficiencies that we study/teach in our parallel processing courses!  

References [2B] and [3] further refine the results of [1A]. The most notable refinement 
involves the concept of configuring a compute node. In the Mercury system, a compute 
node (CN) is an entity on a daughtercard consisting of one or more compute elements 
(CEs). A compute element, in this context, is a SHARC® processor. In our study, the 
Type 1 cards were populated with CNs in which each CN contains 3 CEs; and the Type 2 
cards were populated with CNs in which each CN contains 2 CEs. In [2B] and [3], we 
defined formulations to our optimization problem in which the utilization of each CN is 
determined by the optimization procedure.  

Figure 3 illustrates optimal configurations for a wide range of SAR operating points. 
The horizontal resolution axis represents the desired SAR image resolution in meters, and 
the vertical velocity axis is the speed of the vehicle (e.g., UAV) in meters/sec. The legend 
on the right side of the figure indicates two possible choices (X and Y) for CN 
configurations. The value of XT and YT indicate the card Type (1 or 2) selected for the X 
and Y configurations. For example, the red square symbol ‘ ’ is associated with the use 
of card Type 1 for the X configuration (i.e., XT = 1) and card Type 2 for the Y 
configuration (i.e., YT = 2). Furthermore, for the X configuration, one CE (for each CN) is 
utilized for range processing (i.e., Xr =1) and two CEs are used for azimuth processing 
(i.e., Xa = 2).  Similarly, for the Y configuration, none of the CEs are used for range 
processing, and both CEs (for each CN) are used for azimuth processing (because Yr = 0 
and Ya = 2). For the sake of comparison, consider now the configurations associated with 
the blue times symbol ‘×’ where both the X and Y configurations use the Type 1 card, but 
the utilization of the CNs for X and Y are distinct. The number of configured CNs, and 
thus the total number of cards of each type, is also provided by the optimization 
procedure, but is not shown on Figure 3.  

Although subtle, perhaps, this part of the work is extremely important because it cuts 
to the heart of a bigger issue. The most fundamental questions of interest for these types 
of systems should not necessarily be expressed in terms of processor efficiencies, or even 
processors or memories at all; what is important is the “configuration of the silicon,” i.e., 
how can it be configured to minimize SWAP. The mixing of the two card types we 
studied is only a rough approximation to this general concept of “configurable silicon.” 
With two discrete card types available, many, but not anywhere near all, possible 
combinations of processors and memories can be configured. But remember, processors 
and memory are not the only things we can build out of silicon. More specialized 
functional units can also be built.  
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Parts 3 and 4 of this report deal with a key aspect of the project – namely, is it always 
necessary to configure silicon as discrete processor and memory modules? Could it be 
that silicon configurations consisting of modules or functional units less complex than 
processors and memories are also possible, and have superior SWAP characteristics in 
some situations? Before getting to the answers to these questions, the next part of this 
report deals with optimizing the SWAP performance of a multiprocessor implementation 
for STAP. Although Part 2 is similar to Part 1 in the sense that only processors and 
memories (and not reconfigurable computing) are assumed in the computing platform, 
the mechanism for minimizing SWAP in the STAP application centers around effective 
use of the interconnection network that supports interprocessor communication.   
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Figure 3. Optimal CN Configurations of the CN-constrained Model [2B]. 

 
 
 

 
 



 

 

 

9

Part 2: Optimal Communication Scheduling for STAP 

Overview of References [4C], [5D], [6E], [7], and [8] 

The work here develops and evaluates a genetic-algorithm-based (GA-based) 
optimization technique for the scheduling of messages for a class of parallel embedded 
signal processing techniques known as space-time adaptive processing (STAP). The GA-
based optimization is performed off-line, resulting in static schedules for the compute 
nodes of the parallel system. These schedules are utilized for the on-line implementation 
of the parallel STAP application. The primary motivation and justification for devoting 
significant off-line effort to solving the formulated scheduling problem is the resulting 
reduction of hardware resources required for the actual on-line implementation. Studies 
illustrate that reductions in hardware requirements of around 50% can be achieved by 
employing the results of the proposed scheduling techniques. This reduction in hardware 
requirement is of critical importance for STAP, which is typically an airborne application 
in which the size, weight, and power consumption of the computational platform are 
often severely constrained. 

For an application implemented on a parallel and embedded system to achieve 
required performance, it is important to effectively map the tasks of the application onto 
the processors in a way that reduces the volume of inter-processor communication traffic. 
It is also important to schedule the communication of the required message traffic in a 
manner that minimizes network contention so as to achieve the smallest possible 
communication times.  

Mapping and scheduling can both – either independently or in combination – be cast 
as optimization problems, and optimizing mapping and scheduling objectives can be 
critical to the performance of the overall system. For embedded applications, great 
importance is often placed on determining minimal hardware requirements that can 
support a number of different application scenarios. This is because there are typically 
tight constraints on the amount of hardware that can be accommodated within the 
embedded platform. Using mappings and schedules that minimize the communication 
time of parallel and embedded applications can increase the overall efficiency of the 
parallel system, thus leading to reduced hardware requirements for a given set of 
application scenarios.  

The work here focuses on using a GA-based approach to optimize the scheduling of 
messages for STAP algorithms. STAP is an adaptive signal processing method that 
simultaneously combines signals received from multiple elements of an antenna array 
(the spatial domain) and from multiple pulses (the temporal domain) of a coherent 
processing interval. The focus of this research assumes STAP is implemented using an 
element-space post-Doppler partially adaptive algorithm; refer to references [6E], [7], 
and [8] for details.  

STAP involves signal processing methods that operate on data collected from a set of 
spatially distributed sensors over a given time interval. Signal returns are composed of 
range, pulse, and antenna-element digital samples; consequently, a three-dimensional (3-
D) data cube naturally represents STAP data. A distributed memory multiprocessor 
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machine is assumed here for the parallel STAP implementation. The core processing 
requirement proceeds in three distinct phases of computation, one associated with each 
dimension of the STAP data cube. After each phase of processing, the data must be re-
distributed across the processors of the machine, which represents the communication 
requirements of this parallel application. Thus, there are two primary phases of inter-
processor data communication required: one between the first and second phases of 
processing and one between the second and third phases of processing. After all three 
phases of processing are complete for a given STAP data cube, a new data cube is input 
into the parallel machine for processing. 

A proposed GA-based approach is used to solve the message-scheduling problem 
associated with each of the two phases of inter-processor data communication. This GA-
based optimization is performed off-line, and the results of this optimization are static 
schedules for the compute nodes of the parallel system. These schedules are used within 
the on-line parallel STAP implementation. The results of the study show that significant 
improvements in communication time performance are possible using the proposed 
approach for scheduling. It is then shown that these improvements in communication 
time translate to reductions in required hardware for a class of scenarios. Performance of 
the mappings and schedules are evaluated based on a Mercury RACEway® network 
simulator developed under this project and described in references [4C] and [7]. 

For this work, the STAP data cube is partitioned into sub-cube bars of vectors where 
each vector is mapped onto a given CN (compute node), refer to [6E] for more details. A 
two-dimensional process set, as described in [8], defines the mapping of data onto CNs 
for each computational phase. Additionally, the process set defines the communication 
pattern for the required “distributed corner turns” of the STAP data cube. 

Summarizing the results published in [6E] and [8], it is demonstrated that off-line GA-
based message scheduling can significantly improve the communication performance in a 
parallel system.  When compared to baseline and randomly generated schedules, the GA-
based schedules are significantly superior – typically reducing communication times by 
between 20% and 50%, see [8] for details.   

Interestingly, it is shown that the best mapping – defined as a mapping that minimizes 
a mapping objective function – is not always the best choice in terms of minimizing 
overall communication time. In particular, as the number of CNs is increased, optimal 
mappings that require only one phase of communication generally report higher overall 
communication times than those good (but not optimal) mappings that require two non-
trivial phases of communication.  

The optimization of mapping and scheduling, either independently or in combination, 
is critical to the performance of the STAP application for embedded parallel systems. For 
such systems, great significance is placed on minimizing overall execution time, which 
includes both computation and communication components. Such reductions in execution 
time also translate into improved hardware efficiency and thus reduced hardware 
requirements, which is often critical.  

Through extensive numerical studies, it is shown in [6E] and [8] that the GA-based 
optimization approaches can yield mappings and schedules that greatly improve the on-
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line performance and reduce the hardware requirements of the parallel embedded system. 
Examples are provided that illustrate the optimal mapping and scheduling methodologies 
of [6E] and [8] can produce hardware savings of 50% and more when compared to 
typical solutions to the mapping and scheduling problems that might be employed by 
practitioners. Because of limitations on the size of problems that were 
executed/simulated, systems up to a size of only 32 processors were investigated. 
However, from the trends observed in overall completion times, it is apparent that even 
more significant savings in hardware/power requirements are realizable for STAP 
applications that require substantially larger systems having hundreds or even thousands 
of processors. 
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Part 3: FPGA Power Prediction and Applications 

We discovered during the project period that predicting power consumption for an FPGA 
is a very difficult task. There were no commercially available tools that accurately 
predicted power consumption for any of the existing FPGAs. Thus, a major focus of this 
part of the work involved the development of accurate methods for predicting FPGA 
power consumption. References generated by this project in the area of power prediction 
include [9F], [10], and [11G], which are overviewed in Section 3.1. 

In addition to trying to understand and predict FPGA power consumption, we also 
studied the types of computations that could be effectively mapped onto FPGAs. In 
theory, given enough gates, one could imagine configuring an FPGA board to behave as 
a microprocessor. Thus, again in theory, an FPGA board could be used to perform any 
type of calculation. However, based on the available technology, this would be extremely 
impractical. Our goal was to therefore use FPGAs to devise useful modules that are much 
less complex than a microprocessor, thereby reducing the SWAP overhead inherent when 
computations are performed only on microprocessors and/or DSPs. So, one of our aims 
was to characterize the types of computations that can be practically implemented in 
FPGAs. References produced in the area of mapping applications onto FPGAs include 
[12H], [13], [14], [15I], [16J], and [17], and these are overviewed in Section 3.2.  
 
3.1 FPGA Power Prediction 

Overview of References [9F] and [10] 

The work published in [9F] and [10] describes a practical and accurate power prediction 
tool for the Xilinx® 4000-series FPGA. The utility of the tool is that it enables FPGA 
circuit designers to evaluate the power consumption of their designs without resorting to 
the laborious and expensive empirical approach of instrumenting an FPGA board/chip 
and/or taking actual power consumption measurements. Preliminary evaluation of the 
tool indicates that an error of less than 5% is usually achieved when compared with 
actual physical measurements of power consumption.     

The tool, which is implemented in Java, takes as input two files: (1) a configuration 
file associated with an FPGA design and (2) a pin file that characterizes the signal 
activities of the input data pins to the FPGA. The configuration file defines how each 
CLB (configurable logic block) is programmed and defines signal connections among the 
programmed CLBs. The configuration file is a text file that is generated using a Xilinx® 
M1 Foundation Series utility called ncdread. The pin file is also a text file, but is 
generated by the user. It contains a listing of pins that are associated with the input data 
for the configured FPGA circuit. For each pin number listed, probabilistic parameters are 
provided which characterize the signal activity for that pin. 

Based on the two input files, the tool propagates the probabilistic information 
associated with the pins through a model of the FPGA configuration and calculates the 
activity of every internal signal associated with the configuration. The activity of an 
internal signal s, denoted as, is a value between zero and one and represents the signal’s 
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relative frequency with respect to the frequency of the system clock, f.  Thus, the average 
frequency of signal s is given by as f. 

Computing the activities of the internal signals represents the bulk of computations 
performed by the tool. Given the probabilistic parameters for all input signals of a 
configured CLB, the probabilistic parameters of that CLB’s output signals are determined 
using a mathematical transformation.  Thus, the probabilistic information for the pin 
signals is transformed as it passes through the model of the configured logic, defined by 
the configuration file. However, the probabilistic parameters of some CLB inputs may 
not be initially known because they are not directly connected to pin signals, but instead 
are connected to the output of another CLB for which the output probabilistic parameters 
have not yet been computed (i.e., there is a feedback loop). For this reason, the tool 
applies an iterative approach to update the values for unknown signal parameters. The 
iteration process continues until convergence is reached, which means that the 
determined signal parameters are consistent based on the mathematical transformation 
that relates input and output signal parameter values, for every CLB.  

The average power dissipation due to a signal s is modeled by ½ Cd(s)V 2as f, where 
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cd(s) is the 
equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA 
device. The overall power consumption of the configured device is the sum of the power 
dissipated by all signals of the configured FPGA. 

For the study conducted in [9F], a total of 70 power measurements were made using 
five different configuration files and fourteen different data sets. Descriptions of these 
configuration files and data sets are given in [9F]. Each of the configuration files used 
take a total of 32-bits of data as input. The first three configurations (fp_mult, fp_add, 
int_mult) each take two 16-bit operands on each clock cycle, and the last two (serial_fir 
and parallel_fir) each take one 32-bit complex operand on each clock cycle. The 32 bits 
of input data are numbered as 0 through 31, and two key parameters are used to 
characterize these bits: an activity factor, a and a probability factor, p. As mentioned 
earlier, the activity factor of an input bit is a value between zero and one and represents 
the signal’s relative frequency with respect to the frequency of the system clock, f.  The 
probability factor of a bit represents the fraction of time that the bit has a value of one. 

Figure 4 shows plots of the measured power for all combinations of the configuration 
files and data sets considered. For all cases, the clock was run at f = 30 MHz. With the 
exception of the fp_mult configuration file, the most active data set file (number 6) is 
associated with the highest power consumption. Also, the least active data set file 
(number 5) is associated with the lowest power consumption across all configuration 
files. There is somewhat of a correlation between the number of components utilized by 
each configuration and the power consumption; however, it turned out that even though 
the serial_fir implementation is slightly larger than parallel_fir, it consumes less power. 
This is likely due to the fact that the parallel_fir design requires a high fan-out (and thus 
high routing capacitance) to drive the parallel multipliers. 

In addition to the graph shown in Figure 4, additional figures are provided in [9F] that 
overlay estimates of power consumption predicted by the tool developed in this project. 
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As mentioned above, predicted values of power were generally within 5% of actual 
measured values. 
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Figure 4. Measured power consumption of the configuration files and data sets from [9F]. 

 
Overview of Reference [11G] 

The method used by the above tool to compute signal activities was based on a 
previously published approach from another research group. That approach has some 
difficulties, primarily related to its time complexity. In [11G], a new analytical approach 
was developed by us for calculating signal activities. Our approach is based on a Markov 
chain signal model, and directly accounts for correlations present among the signals. We 
verified the accuracy of the approach by comparing signal activity values calculated 
using our approach with corresponding values produced through simulation studies. It 
was also demonstrated that the proposed approach is much more computationally 
efficient than competing approaches. In addition to describing the new approach for 
calculating signal activities, [11G] also provides a comprehensive review of past 
approaches, including the approach implemented for the tool described in [9F] and [10].  
 
3.2 FPGA Applications 

Overview of References [12H] and [13] 

In references [12H] and [13], techniques for mapping portions of space-time adaptive 
processing (STAP) computations onto FPGAs are described. The output of STAP is a 
weighted sum of multiple radar returns, where the weights for each return in the sum are 
calculated adaptively and in real-time. The most computationally intensive portion of 
most STAP approaches is the calculation of the adaptive weight values, which typically 
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constitutes over 90% of all the computations needed in adaptive processing. Calculation 
of the weights involves solving a set of linear equations based on an estimate of the 
covariance matrix associated with the radar return data. The traditional approach for 
computing the adaptive weights is based on a direct method called QR-decomposition. 
This method has a fixed computational complexity, which depends on the size of the 
equation matrix and provides the exact solution. An alternative approach based on an 
iterative method called Conjugate Gradient was investigated, which allows for trading off 
accuracy for reduced computational complexity. The two approaches are analyzed and 
compared in [13]. The results show that the Conjugate Gradient approach can reduce the 
computations needed at the cost of reduced accuracy in some cases. 

Existing computational strategies for STAP typically rely exclusively on the use of 
multiple DSPs and/or GPPs. An alternative strategy is proposed in [12H] and [13], which 
makes use of FPGAs as vector co-processors that perform inner product calculations. 
Two different “inner-product co-processor” designs are introduced for use with a host 
DSP or GPP. The first has a multiply-and accumulate structure and the second uses a 
reduction-style tree structure having two multipliers and an adder. For a fixed clock rate, 
the second design can provide a higher throughput, but requires more computation from 
the host (to perform the final summation of the partial sums).  

In the work of [12H] and [13], the two inner-product co-processors were implemented 
using a block floating point format, which is much simpler to implement than standard 
floating point units. We also investigated overall accuracy of block floating point versus 
full floating point. It was demonstrated that the block floating point co-processors 
produce acceptable accuracy results for input data distributions that are uniformly 
distributed. Poor results are obtained, however, for cases where one or a few of the 
elements are much larger than the rest of the numbers. This is because the block-floating-
point architecture normalizes all the exponents to the maximum exponent by shifting out 
the least significant bits of the mantissa so that all the exponents are equal, and then all 
the operations are integer arithmetic operations (based on the resulting mantissas), which 
are much easier to perform than general floating-point operations. The shifting out of the 
bits produces inaccuracy in the computations. For all the ranges of numbers considered, 
if the numbers are uniformly distributed, then the exponent distribution has an increasing 
exponential shape with a majority of the numbers close to the maximum value in the 
exponent domain. This results in a small number of bits from the mantissas of the 
numbers being shifted out, on the average. Another important point is that the multiply 
implementation uses a 15-bit mantissa, which implies that the mantissa of the input 
floating-point number is truncated to 15 bits from 23 bits, which itself introduces some 
inaccuracies. 
 
Overview of Reference [14] 

In reference [14], further studies of inner-product co-processor designs were conducted. 
In contrast to the inner product designs of [12H] and [13], which were based on a block 
floating point format, both floating point and integer formats were used in [14], both 
using 16-bit formats. The studies demonstrated that inner-product co-processors, for both 
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integer and floating-point data, could fit into current (at that time) FPGA technology and 
achieve significant speed and throughput. The results of the implementations show that it 
is feasible and beneficial under certain circumstances to implement floating-point and 
integer operations in FPGAs (i.e., such as when a custom data format can be used, as 
with the SHARC® DSP which can convert back and forth between IEEE 32-Bit floating 
point and the SHARC® DSP 16-bit floating point formats).   

The studies in [14] also considered the advantages and disadvantages of employing 
different degrees of pipelining in the inner product designs. One interesting (and 
somewhat counterintuitive) outcome related to pipelined versions of the designs was that 
adding more pipeline stages did not always allow for an increased clock speed at which 
the circuit could be executed. This was due to the fact that adding in the pipeline stages 
also added more overall complexity, which made it more difficult for the place-and-route 
routines of the FPGA design tool to find good implementations. Thus, as more pipelined 
stages were added, critical signal lengths sometimes increased, dictating that the clock 
rate actually had to be decreased.  Estimates of power consumption were also evaluated 
for all designs considered in [14].  

 
Overview of Reference [15I] 

Two major contributions are presented in [15I]. First, it is shown that the core 
computations from the SAR application, including both the range compression and 
azimuth processing phases, can be structured as a single deep computational pipeline that 
can be implemented directly on an array of FPGAs. Past results for high-throughput SAR 
processing (e.g., refer to [1A], [2B], and [3]) typically assume the computations are to be 
mapped onto a distributed memory multiprocessor system in which a subset of the 
available compute elements (CEs) is assigned to perform range processing and the 
remaining CEs perform azimuth processing. In this type of traditional approach, a 
number of processed range vectors are sent from the range CEs to the azimuth CEs where 
they are buffered in memory. After a prescribed number of compressed range vectors are 
present in the memory space of the azimuth CEs, azimuth processing commences on the 
azimuth CEs. Because of the significant intermediate buffer storage required by this 
approach, and the associated placing and fetching of data in this memory space by the 
range and azimuth CEs, respectively, this type of SAR implementation is generally not 
thought to be “purely streaming.” However, as is presented in [15I], these computations 
(both phases) can in fact be structured as a single computational pipeline, which can be 
directly mapped onto an array of FPGAs.  

In the proposed approach, no intermediate memory buffer is required between the two 
phases of computation. Instead, within the structure of the computational pipeline are 
long segments of delay elements that effectively provide the intermediate storage 
associated with the more traditional approach. Figure 5 illustrates the structure of the 
computational pipeline. In the figure, small values of parameters are used for the purpose 
minimizing the size of the pipeline, while still illustrating its basic structure. Realistic 
parameters values would be on the order of thousands, resulting in a pipeline with 
millions of registers. Further details on sizing analysis and hardware comparisons 
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between a deep pipeline implementation versus a multiprocessor implementation are 
provided in the online link to the presentation materials for reference [15I]. 
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Figure 5. Structure of the deep pipeline. 

 
 One potential advantage of the proposed approach is that data need not be 

continuously stored and then fetched from a separate memory module by CEs (which, 
incidentally, can require significant power consumption). Instead, the data streams 
continuously through a long computational pipeline. Within this pipeline are the taps of 
the FIR (finite impulse response) implementations of both the range and azimuth 
processing, interspersed with segments of delay elements. Although the resulting pipeline 
may be thousands of stages long for practical values of SAR parameters, it is a viable 
approach because end-to-end latencies on the order of 1 millisecond are typically 
acceptable, provided that the required throughput is achieved.  

The second contribution presented in [15I] demonstrates how signal activity 
parameters of incoming data can be transformed, before the data are processed by a 
computational pipeline, as a means of reducing overall power consumption. The key to 
understanding this approach is the realization that the activity levels of the input signals 
to the computational pipeline dictate its level of power consumption. The activity of a 
given input signal (i.e., bit position) is defined as the fraction of time that the signal 
transitions relative to the system clock. We demonstrated that increasing/decreasing the 
signal activities of input data to a pipelined circuit implemented on an FPGA also 
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increases/decreases the power consumption of the circuit. In [15I], we introduce a 
concept for how the activities of the input data can be transformed (pre-processed) so that 
the resulting (transformed) signals that are input into the computational pipeline have 
activity values that are well-matched with the pipelined circuit in terms of minimizing 
consumed power. At the end of the computational pipeline, an inverse transformation is 
applied to the output values to convert them back to their proper (and meaningful) 
representation. This concept is illustrated in Figure 6. The approach is based on two 
fundamental assumptions: (1) that the power consumption of the computational pipeline 
is significantly higher than that of the computational structures implemented to perform 
the transform and inverse transformation of the data and (2) that the computations 
performed within the computational pipeline are linear and time invariant. 

 
Deep Pipeline

Assume Power Model
P(a’)

input 
stream 

output 
stream

-1TT
a a’

 
Figure 6. Using activity transformations to minimize power consumption. 

 
Overview of References [16J] and [17] 

References [16J] and [17] present a comparative study of different parallel prefix circuits 
from the point of view of power-speed trade-off. The prefix circuit plays an important 
role in many applications such as the carry-look-ahead adder, ranking, packing, and radix 
sort. The power consumption and the power-delay product of seven parallel prefix 
circuits were compared. By assuming a linear capacitance model, combined with 
PSpice® simulations, we investigated the power consumption in the parallel prefix 
circuits. The degrees of freedom studied include different parallel prefix architectures and 
voltage scaling. The results show that the use of the linear output capacitance assumption 
provides power estimates that are consistent with those obtained using PSpice® 
simulations.  It was found that the divide-and-conquer prefix circuit, which is the fastest 
circuit considered, consumes the most power. Also – according to PSpice® simulations – 
the power-delay product of the LYD (Lakshmivarahan-Yang-Dhall) prefix circuit was 
the best (i.e., lowest) among the circuits studied, while the power-delay product of the 
divide-and-conquer was the highest. This study demonstrates the importance of careful 
analysis of the speed-power trade-off when considering architectural choices for 
implementing a given computational function in hardware. 
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Part 4: Hybrid FPGA/DSP/GPP Platform 

Overview of Reference [18K] 

The prototype platform was developed to demonstrate the advantages and trade-offs 
associated with the combined use of different hardware technologies for two embedded 
radar-processing applications, namely SAR and STAP. The primary metrics of interest 
are size, weight, and power utilizations. The developed system can be configured with 
FPGAs, DSPs, and/or GPPs. Although the prototype system was not evaluated through 
fielded studies, experiments involving continuous input streams at relatively high rates 
were conducted in the laboratory using unprocessed radar data as input.  

The FPGA components of the prototype system are commercially available 
WildOneTM and WildForceTM boards (from Annapolis Microsystems) populated with 
4000-series Xilinx® parts. The WildForceTM boards each have four 4085-series FPGAs 
plus one control FPGA. The DSP/GPP components of the system are within a Mercury 
Race Multicomputer configured with both SHARC® and PowerPC® CNs. The Mercury 
system can be configured with up to eight PowerPC® nodes and eight SHARC® 
compute nodes (each SHARC® CN actually contains three SHARC® DSP chips).  

An overview of the overall architecture is depicted in Figure 7. A more detailed view 
of the major components of the hybrid system are illustrated in Figure 8, and a 
photograph of the actual prototype system is provided in Figure 9. 

The source PC is responsible for initially loading unprocessed radar data (from disk) 
into a circular buffer within its main memory. Once the input data is loaded into the 
circular buffer, the source PC then continuously (and repeatedly) streams this data into 
the front-end FPGA subsystem, denoted as (F) in Figures 7, 8, and 9. It was necessary to 
locate the input data in a large main memory buffer in order to achieve realistic data 
throughput rates, which would otherwise not be possible if the data were streamed 
directly from the disk of the source PC.  All of the Annapolis FPGA boards are PCI-
based and reside on the data source and/or data sink PCs. A total of four WildForceTM 
boards are available, and zero or more of these may reside on the source and sink PCs. 
The source and sink PCs also contain one WildOneTM board each. The WildOneTM 
boards are not used for computation; they handle the data communication (through the 
PCI bus) between the PCs and the FPGA subsystems. The data communication among all 
FPGA boards is through two types of 36-bit wide connectors, one called systolic and one 
called SIMD.   

The data communication between the front-end FPGA subsystem (F) and the 
DSP/GPP subsystem is a custom interface developed using the systolic connector from 
Annapolis and the RIN-T input device from Mercury. Similarly, the data communication 
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a 
custom interface developed using the ROUT-T output device from Mercury and the 
systolic connector from Annapolis. More details on the design of the interfaces between 
the Mercury and the front- and back-end subsystems are provided in Figures 10 and 11, 
respectively.  
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Figure 7.  Block diagram of the FPGA/DSP/GPP prototype architecture. 

Design and implementation of the interface connecting the Mercury to the back-end 
FPGA subsystem (B), shown in Figure 11, was particularly challenging. The clock signal 
used to strobe the data from the Mercury was not programmable; it was fixed at 33 MHz.  
It turned out that the input impedance of the back-end FPGA subsystem was not very 
well matched with the output of the Mercury subsystem. As a result, the maximum clock 
rate possible was only about 8Mhz, or about one-fourth of fixed 33Mhz clock available. 
So, we implemented a scheme in which four copies each data word was transmitted from 
the Mercury, which effectively reduced the clock rate by a factor of four. We also had to 
include a packing scheme, which encoded two bits of each transmitted word to enable 
detection of the boundary between groups of copied data. This was necessary because the 
actual number of copies of each word received by the back-end GPGA subsystem was 
unpredictable, and varied between two and four. More details on this scheme can be 
found at the online link to the presentation materials for reference [18K]. 

Figures 12 and 13 illustrate how the major computational components of the SAR and 
STAP applications can be mapped onto the prototype system. A candidate mapping is 
defined by assigning the computations of each major component to one or both of the 
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP 
subsystems defined in Figure 7). Using SAR to illustrate, one mapping would be to 
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perform all of the range compression on the front-end FPGA subsystem (F) and then 
perform all azimuth processing on the DSP/GPP subsystem. Another possible mapping is 
defined by using the FPGA subsystems and the DSP/GPP for both components of 
computation. It is also possible to use only the DSP/GPP subsystem for both components 
of computations.  
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Figure 8. Detail of the FPGA/DSP/GPP prototype architecture. 

 
The SAR studies were designed by adapting the RASSP (Rapid Prototyping of 

Application Specific Signal Processors) benchmark developed originally by Lincoln 
Laboratory at MIT. The benchmark, which was originally implemented in serial C code, 
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming 
component was also added so that input data can be sent continuously from the data 
source of the prototype system. Core computations from the range compression and 
azimuth processing components were implemented for the FPGA subsystems, as 
described earlier in Part 3 of this report.  

An overview of SAR processing flow is provided in Figure 14. The data distribution 
scheme for SAR is illustrated in Figure 15. For the case shown in the figure, a total of 
eight CNs were utilized: two SHARC® CNs (one for input and the other for output) and 
six PowerPC® CNs (two for range processing and four for azimuth processing). A 
detailed timing diagram is shown in Figure 16. Note from this figure that the processing 
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is well balanced and that the amount of idle time for each CN is relatively small. A 
summary of time and throughput results are provided in Figure 17. Note that the required 
input and output throughputs realized for this particular study, 0.71 Mbytes/sec and 1.42 
Mbytes/sec, are well within the maximum capacity supported by the custom interfaces of 
60 Mbytes/sec and 31 Mbytes/sec (refer to Figures 10 and 11). This implies that the 
constructed prototype system is capable of processing much more intensive instances of 
SAR processing.  

Hybrid FPGA/DSP/GPP Prototype Architecture
Photograph

Data Sink
PC

Data Source
PC

Custom Interface Cables

Mercury
DSP/GPP 

Subsystem

Annapolis
FPGA

Subsystem
(F) Annapolis

FPGA
Subsystem

(B)

SPARC

 
Figure 9. Photograph of the FPGA/DSP/GPP prototype architecture. 

 
The STAP studies were designed by adapting the RT_STAP (Real Time STAP) 

benchmark developed originally at the MITRE Corporation. This benchmark was already 
implemented for parallel execution on a PowerPC-based Mercury system. This 
implementation was expanded to also enable execution on SHARC® compute nodes. The 
same basic data streaming component that was developed for SAR was also adapted to 
enable the STAP input data to be sent continuously from the data source. Core 
computations from the range compression and weight computation components from the 
STAP processing flow were implemented for the FPGA subsystems.  

Similar to the figures associated with SAR, an overview of the scheme used to stream 
STAP processing is provided in Figure 18. Note from the figure that two SHARC® 
compute nodes are used for I/O and eight PowerPC® are used to actually perform the 
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STAP computations (for the particular instance of STAP considered). Unlike SAR, where 
CNs are dedicated exclusively to one particular phase of the computation, in the STAP 
implementation all CNs work on all three phases of computation. Figure 19 illustrates the 
three phases of computation required by STAP and the two communication phases (i.e., 
re-partitioning of the data cube) between the three phases. A space-time diagram is 
provided in Figure 20 followed by a summary of obtained throughput results in Figure 
21.  As was the case for SAR, note from Figure 21 that the required input and output 
throughputs realized for this particular study are well within the maximum capacity 
supported by our custom interfaces. 
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Figure 11. Interface Design: Communication from Mercury to Annapolis FPGA (B). 
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Figure 12. Illustration of how the major computational components of SAR processing 
can be mapped onto the hybrid system. 
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Figure 13.  Illustration of how the major computational components of STAP processing 
can be mapped onto the hybrid system. 
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Figure 15. Data distribution for Parallel SAR Processing on Mercury. 
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Space-Time Diagram for Streaming Parallel SAR Processing
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O
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Figure 16. Space-time diagram for streaming parallel SAR processing. 
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Figure 17. Throughput requirements achieved for streaming parallel SAR processing. 
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Figure 18. Streaming parallel RT_STAP on Mercury Subsystem. 
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Figure 19. Parallel RT_STAP on Mercury Subsystem. 
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Space-Time Diagram for Parallel RT_STAP 
Using 8 PPC CNs for Processing and 2 SHARC CNs for I/O
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Figure 20. Space-time diagram for parallel RT_STAP. 
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Figure 21. Throughput requirements achieved for the medium case parallel RT_STAP. 
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Conclusion 

Technology Transfer 

Technology transfer took place along five main paths: (1) the DARPA Adapted 
Computing Systems (ACS) community through PI (Principal Investigator) meetings and 
other conferences (plus communications with PIs and program managers in related 
areas); (2) the employees and technical support contacts at Mercury Computer Systems, 
Inc.; (3) the employees and technical support contacts at Annapolis Micro Systems, Inc.; 
(4) contacts with various defense contractors such as Northrop Grumman; and (5) the 
academic high-performance embedded computing research community. 

Regarding path (1), we worked with DARPA and other PIs associated with related 
projects to ensure efficient transfer of information and technology.  We attended all PI 
meetings and helped support DARPA in presenting the results of this effort for further 
program funding.  

For paths (2) and (3), we consulted with the vendors on a regular basis, especially 
during the period of time in which the prototype system was being constructed.  We kept 
both vendors informed on the current status of the prototype throughout the project. The 
success of our project sparked interaction between the two vendors in terms of defining 
and refining interface standards for interconnecting their products. These new standards, 
which were not available at the time we were constructing our prototype, make it much 
easier to construct an FPGA/DSP/GPP system such as the one implemented for this 
project.   

The transfer along path (4) was important because it enabled our proposed approaches 
to be considered and evaluated by defense systems designers and end-users. Also, staying 
in close contact with major defense contractors and other contractors that were part of the 
ACS program, ensured that the approaches and systems we developed were realistic. 

As indicated by path (5), it was important to keep the academic research community 
informed about our developments. The publications that resulted from this project have 
made an impact and serve to illustrate the types of research of interest to DARPA. It also 
illustrated that there is an abundance of basic, fundamental research to be done on the 
way to solving important problems of military interest. 

 
Deliverables 

This project delivered an abundance of results of both practical and theoretical 
importance. Many of these results have been published as journal and conference papers, 
and copies of these papers are provided in the appendices of this report. Online links to 
delivered publications, presentation materials, dissertations, theses, and additional 
materials are provided in the References and Additional Materials sections of the report. 
Associated with each publication is one or more tool or technique of immediate practical 
importance to practitioners in the area of embedded high-performance systems design 
and implementation. Also delivered was a prototype platform in which the three 
technologies of interest (FPGA, DSP, and GPP) were integrated into a single high-
performance computational engine. This platform served as a test bed in which 
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experimental tests, evaluations, and assessments associated with the research were 
conducted.  

The theme of the project was to focus on techniques and systems for minimizing 
power consumption requirements for two particular radar-processing applications. In 
addition to providing results along these lines, many of the techniques and results 
delivered are applicable to a much broader set of problems that arise in high-
performance, SWAP-constrained embedded systems.  
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